當一個巨大的恆星(質量是太陽質量的8倍以上)死亡時,恆星的殘骸可能會形成黑洞。而黑洞的形成是因為大質量的恆星在演化的未期都會發生超新星爆炸,引力的坍縮,大到連中子星的簡併壓力這樣極為緊密的結構都支撐不住,星體就會繼續收縮下去,直到成為無法想像的緊密成為一點,這就是「黑洞」。黑洞所包含的物質緊密,產生的重力也強得無法想像,強到連光線都跑不出來,因此而得名。任何東西一旦掉到黑洞,便被分解、壓縮而成為黑洞的一部分。

        而黑洞的概念是由愛因斯坦廣義相對論所推導出來的結論:一個核反應完全停止的星體,無力頂住萬有引力而坍縮;當原子被壓破時,就會變成白矮星,而恆星量較大時,則還會敲開原子核,變成擠成一團、密度更大百萬倍的中子星;如果坍縮的恆星質量更大時,則坍縮還會進行下去,所有物質會無可避免、永遠坍縮下去,所有質量將集中在一個沒有大小的「奇異點」上。比較正確的說法來說這個點是我們根本不知道那裡是甚麼一回事,因為我們所知的一切物理定律根本不適用於情況如此極端的地方。
 

光的軌跡奇異點周圍的重力也特別大,在某個範圍以內,重力龐大得連光線也逃不出去。這個連光線也逃不出去的面,稱為事相面(event horizon)。光線和任何物質都只能從事相面外部進入其內部,而無法從裡邊逸出。這個事相面的裡邊就是黑洞。黑洞是個極為單純的星體,只包括位於中央的奇異點和圍繞異點的事相面。事相面內除了奇異點之外,連一個原子也沒有。黑洞與黑洞之間的區別,只能從質量、自旋角度動量(spin angulaq momentum)及電荷三個性質來判斷。在事件穹界之外,有一個稱為光子球層的球狀區域。在這裡,只要光線是以切線方式擦過光子球層,便會被黑洞引力俘獲,沿著這球層像衛星一樣永遠繞著黑洞旋轉。黑洞的可怕引力會隨著距離遞減,事實上假若我們的太陽突然變成一個黑洞,地球並不會感到太陽的引力有甚麼不同,仍舊會依著同一軌道繞著太陽旋轉。

恆星質量越大,體積越小,引力的羈絆便越大,所需逃逸速度亦越高。另一方面,愛恩斯坦的相對論 斷言宇宙中最高的速度便是光速,所以如所需的逃逸速度大於光速,那麼宇宙中包括光在內的一切都 不可能逃離引力的魔掌,這顆恆星便成為黑洞。
 

扭曲不了解廣義相對論,便不能真正了解黑洞。廣義相對論的中心思想是質量會扭曲其附近的時空,質量越大,影響越明顯。牛頓力學認為月球繞地球旋轉,是因為月球受到地球引力的吸引;但廣義相對論的說法則是地球的質量扭曲了附近 的時空,月球在不平坦的時空以最自然的方式運行,結果走出了一條繞著地球轉的曲線,情況就如彈珠在不平坦的地面走,會左搖右擺一樣。同 樣道理,光線在通過大質量物質附近時,亦會以以彎曲了的直線運行。
 

史瓦西黑洞黑洞是引力極強之地,光線路徑扭曲的程度,足以令光線無法逃跑。在黑洞附近,光線(包括宙所有其他物質)能否逃離的分水嶺稱為事件穹界。為甚麼叫事件穹界呢?原因很簡單,由於在事件穹界之內的一切皆不能逃離,所以在這個界限以內發生的一切,將永遠不能為人所知,事件穹界便是事件能為 人所探知的極限。對於一個史瓦西黑洞,即一個並不自轉和不帶電的黑洞﹐事件穹界的半徑稱為史瓦西半徑(RS),數值的大小只取決於黑洞的質量。

R S = 2 G M / c 2

公式中的M是黑洞的質量,G是引力常數,c是光速。太陽質量的黑洞的史瓦西半徑約為3公里。在史瓦 西半徑以內的範圍,被定義為黑洞所佔有的空間。


落入黑洞
落入黑洞假若有人跌進了黑洞,會發生甚麼事呢?首先,如你在遠處看著這個不幸的太空人,你會發覺開始時就如一切向下跌的物體一樣,他跌進黑洞的速度會越來越快,當他接近黑洞,奇怪的事開始發生,你 會發覺他開始減速,越接近事件穹界,他的速度便越慢,一切變得像慢動作影片,最後更彷似停留不動,永遠不能到達事件穹界!

但對這個不幸的太空人來說,情況便完全不同。當然我們先要假設這個太空人有超人般的身體,不會被黑洞的引力殺死。當他越來越接近黑洞,黑洞看來會越來越大,更開始包圍著他﹐只剩太空船的尾窗仍可看到一角宇宙,但除此之外,倒沒有甚麼特別,之後在極短極短的時間之內,他便會撞黑洞的奇異點 。


旋轉黑洞
旋轉黑洞 旋轉黑洞又稱為克爾黑洞,它們的特性和以上所說的靜止黑洞很不同。旋轉黑洞有外內兩個事件穹界,而它們之間的區域稱為能層。在能層內的物質會被黑洞自轉所帶動,但仍有機會逃離黑洞的魔掌。內事件穹界才是真正的死亡線,一旦進入便永無翻身之日。

 


旋轉黑洞 理論上,我們是可以從黑洞中搾取它的自轉能。方法是把一件物體放進能層,然後把物體分成兩部分,讓一部分墮進黑洞,另外一部分逃離黑洞,若我們適當地選擇它們的質量、分離的時間等等,便可以讓逃離的部分以更高速度(即更高能量)離開黑洞。或者在茫茫宇宙,確有先進的天外文明,利用這個方法抽取黑洞的能量呢!


尋找黑洞
尋找黑洞黑洞不發光,就不可能發現它的存在的證據了!其實不然;在事件穹界之外,開普勒定律勉強適用。我們可以量度繞著懷疑黑洞轉的氣體的速度,然後利用開普勒定律,計算出中心物體的質量下限。假若質量超過三個太陽質量,而且它非常細小又漆黑一片,我們便很有理由相信這是黑洞。例如當周圍的物質被吸引時,卻會透露出黑洞的存在。圍繞黑洞的雲氣會以極高的速度運動,若偵測到氣體圍繞著非常小的區域高速運動,我們便能推測該區域可能有個黑洞。而當物質被吸入黑洞時,因這些氣體由質子及電子的電漿組成,彼此摩擦而成高溫狀態,便會放出r及x射光,於是我們便可察覺黑洞的存在。

天鵝座X-1

便是最早發現的懷疑黑洞。這物體的伴星是一顆O型星,質量下限是七個太陽質量,並會放射出X射線。一切證據都顯示它極有可能是黑洞。
 

NGC4261

星系NGC4261是另一個例子。吸積盤的質量不計在內,星系中心物體的質量為1.2x109個太陽質量,大小卻只和太陽系相若 ,唯一解釋便是它是一個大質量黑洞。

M87 理論上,黑洞是沒有質量上限的。它們可以超乎想像的大和重,我們稱這種黑洞為特大質量黑洞。我 們在不少星系中心都找到這種黑洞。例如在M87星系的核心內便有一個質量為3x109個太陽質量,但直 徑只有數光星期之內的物體,只有黑洞才可能這麼重而同時又這麼細小。
NGC3377

根據哈伯太空望遠鏡的觀測,天文學家得知系外星系NGC3377等的中心有巨大黑洞存在。再者,距離地球1,600萬光年,NGC4486B有2個中心核(超大黑洞),兩個黑洞可能構成雙星系。 圖右上半人馬座A星系,星系最大的特徵是有一個巨大的塵埃道(紫色),把它一分為二。

http://oposite.stsci.edu/pubinfo/pr/97/01.html

NGC7052  

1998 哈伯發現圓盤環繞這巨大黑洞 (質量達三億個太陽)的黑洞,而圍繞它的是橢圓星系NGC 7052(位於狐狸座,距地球191,000,000光年 ),而造成這現象可能是古代星系碰撞之後所殘留的,而這個圓盤狀物體可能在幾十億年級將被黑洞所吞噬。

      離中心 186光年的圓盤就像是一個轉動中的巨大旋轉木馬,速率可達時速 341,000英里(每秒 155公里),快速的旋轉提供給我們測量黑洞對氣體萬有引力大小的重要指標。雖然黑洞質量有太陽的三億倍,但其比重只佔NGC 7052星系總質量的百分之0.05,但這個圓盤還是比它輕了一百多倍,而它所擁有的原料還可以形成三百萬顆像太陽的質量,

      圓盤中央較亮的部分是一星球的大集團,而它支付黑洞周圍強大的重力,黑洞和圓盤並無相同的起源,有可能是圓盤是在黑洞形成之後,因星系與鄰近較小的星系碰撞後形成的 。